
LECTURE 7: FUN WITH CURVATURE

INTRODUCTION

We have already (informally) introduced the curvature F(A) of a connection A. In
gauge theories, the fundamental dynamical degrees of variables are given by a connec-
tion A, which appears in the Yang–Mills action

(1) S(A) =
∫

M
Tr(F(A) ∧ ?F(A)),

where G = SU(N) and Tr is the trace in the fundamental representation, through the
curvature. By contrast, in four dimensions, the similar looking∫

M
Tr(F(A) ∧ F(A)),

does not lead to interesting dynamics at all: in fact it doesn’t even depend on the con-
nection A! This is an example of a topological term and the goal of this lecture is to
explain why this is the case.

1. PRELIMINARIES

Let G be a fixed compact Lie group, for example G = SU(N). Recall that we are
working on a principal G-bundle P→ M and that this bundle is completely determined
by specifying an open covering {Uα}α∈I , together with transition functions {ϕαβ : Uαβ →
G} satisfying the cocycle identity

ϕαγ = ϕαβ ϕβγ,

on triple overlaps Uαβγ. In terms of these data, the vector bundle (P×V)/G associated
to a representation ρ : G → GL(V) is given by the same covering together with the
transition functions {ρ ◦ ϕαβ}. This gives a very concrete way to identity the bundles
associated to certain tensors. For example, we have seen that the local connection Aα

transforms on overlaps as

Aα := ϕ−1
αβ Aβ ϕαβ + dϕαβ ϕ−1

αβ .

Therefore, a connection cannot be a section of some vector bundle: there is no vector
bundle with transition functions involving the last term in the equation above. How-
ever, if we take the difference of two connections A − B, we see that these transform
locally as

(A− B)β = ϕ−1
αβ Aβ ϕαβ,
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i.e., they are a section of the vector bundle associated to the adjoint representation:
ad(P) := (P× g)/G. We have already seen this before:

Lemma 1.1. The difference between two connections A− B ∈ Ω1(M, ad(P)).

Another example is given by the curvature of a connection A defined by the equation

F(A) := dA + A ∧ A.

We have seen that, pulling back this form along local sections sα : Uα → P gives Fα :=
s∗αF ∈ Ω2(Uα, g) satisfying

Fα = ϕαβFβ ϕ−1
αβ .

We therefore conclude that there is a unique F ∈ Ω2(M, ad(P)) such that F(A) := π∗F.
We usually identify the curvature F(A) with this ad(P)-valued two form. This curva-
ture form satisfies an important identity, for which we first observe that the connection
A on P defines a connection on any of its associated vector bundles, given in the form of
a covariant derivative, in particular the bundle associated to the adjoint representation:

Lemma 1.2 (Bianchi identity).

∇Ad(P)
A F(A) = 0.

Proof. This is a local computation:

∇Ad(P)
A F(A)|Uα = d(dAα + Aα ∧ Aα) + [Aα, dAα + Aα ∧ Aα]

= dAα ∧ Aα − Aα ∧ dAα + Aα ∧ dAα − dAα ∧ Aα

= 0.

�

Remark 1.3 (A ∧ A or 1
2 [A, A]?). For matrix Lie groups we write A ∧ A which means

combining the ∧-product with matrix multiplication:

(A ∧ A)(X, Y) =
1
2
(A(X)A(Y)− A(Y)A(X)),

where X and Y are vector fields on P. Now the right hand side has a meaning for any
Lie algebra valued 1-form: we therefore can also write 1

2 [A, A].

2. THE CHERN–WEIL HOMOMORPHISM

Let P→ M be a principal G-bundle, and denote by g the Lie algebra of G.

Definition 2.1. An invariant homogeneous polynomial is given by a polynomial map P :
g→ C which is invariant under the adjoint action of G:

P(Adg(X)) = P(X), for all X ∈ g, g ∈ G.

We denote the algebra of invariant polynomials of arbitrary degree by Iinv(G).
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We denote by Ik
inv(G) the invariant polynomials of degree k. Closely related to an

invariant polynomials are invariant symmetric multilinear maps

P̃ : g× . . .× g︸ ︷︷ ︸
k times

→ C

invariant under the action of G:

P̃(Adg(X1), . . . , Adg(Xk)) = P̃(X1, . . . , Xk), for Xi ∈ g and g ∈ G.

The correspondence between P and P̃ is as follows: given P̃, define

P(X) := P̃(X, . . . , X),

the restriction to the diagonal. Conversely, given P, define its polarization as

P̃(X1, . . . , Xk) :=
(−1)k

k!

k

∑
j=1

∑
i1<...<ij

P(Xi1 + . . . + Xij).

For example, for k = 2 we have

P̃(X1, X2) :=
1
2
(P(X1 + X2)− P(X1)− P(X2)).

In the following we will therefore refer to both P as well as P̃ interchangeably as an
invariant polynomial.

Given a principal G-bundle P → M and P ∈ Ik
inv(G), we pick a connection A on P

with curvature F(A) ∈ Ω2(M, ad(P)) and consider the differential form

(2) P(F(A)) ∈ Ω2k(M).

To make sense of this expression, choose, for a point x ∈ M an isomorphism ad(P)x ∼= g

of the fiber of ad(P). Then we can apply P to F(A) ∈ Ω2(M, ad(P)) at that point.
Since P is invariant, its value is in fact independent of the chosen isomorphism, and
combining with the wedge product, this yields a smooth differential form of degree 2k.

Theorem 2.2 (Chern–Weil).

i) The form P(F(A)) is closed: dP(F(A)) = 0.
ii) The induced cohomology class in H2k

dR(M) is independent of the chosen connection A.

Proof. First remark that by invariance of P we have

k

∑
i=1

P(X1, . . . , [A, Xi], . . . , Xk) = 0, A, X1, . . . , Xk ∈ g.

This identity can be obtained by using invariance with respect to conjugation with g =

exp(tA) and differentiation. Therefore, in a local trivialization where we write Aα for
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the connection 1-form, we find

dP(Fα, . . . , Fα) =
k

∑
i=1

P(Fα, . . . , dFα, . . . , Fα)

=
k

∑
i=1

P(Fα, . . . ,∇ad(P)Fα − [Aα, Fα], . . . , Fα)

= 0

by the Bianchi identity and the invariance of P. This proves the first claim.
For the second, let A′ be another connection. By Lemma 1.1 we have A′ = A + α for

some α ∈ Ω1(M; End(E)). Therefore the convex combination At = tA′ + (1− t)A =

A + tα, t ∈ [0, 1] is a family of connections interpolating between A and A′. We now
consider At as a connection on the principal bundle P× [0, 1]→ M× [0, 1].

A small computation shows that

F(At) = F(A) + dt ∧ α + t∇α + t2α ∧ α ∈ Ω2(M× [0, 1], g).

For an invariant polynomial P of degree k, we now consider the fiber integral over
t-parameter:

L(∇,∇′) :=
∫ 1

0
P(F(At)) ∈ Ω2k−1(M).

(To evaluate this integral, we pick the terms in P(F(At)) which contain one factor dt
and then perform the integral.) This L is called the transgression form. Stokes’ theorem
now gives:

dL(∇,∇′) = d
∫ 1

0
P(F(At))

=
∫ 1

0
dP(F(At))− P(F(At))|t=1 + P(F(At))|t=0

= P(F(A))− P(F(A′)).

This proves the second claim. �

Corollary 2.3 (Chern–Weil homomorphism). Given a principal bundle P → M, there is a
canonical homomorphism of graded algebras

Iinv(G)→ H2•
dR(M).

3. CHERN CLASSES OF VECTOR BUNDLES

In the previous section we have defined characteristic classes of principal bundles.
To define such cohomology classes for vector bundles, we could go over to the frame
bundle of a vector bundle: this is a principal GL(r, C) (for a complex vector bundle of
rank r), to which the theory of the previous section applies, and for any invariant poly-
nomial P on the Lie algebra Matr(C) of r× r-matrices, we obtain a characteristic class.
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Chern classes of vector bundles are examples associated to specific examples of invari-
ant polynomials. Before we discuss these, let us briefly explain how to compute directly
the curvature out of a connection (i.e., a covariant derivative) on a vector bundle.

3.1. Curvature on vector bundles. Let E → M be a vector bundle equipped with a
connection ∇. Using the Leibniz identity, we can extend a connection to an operator
∇ : Ωk(M, E)→ Ωk+1(M; E) by

∇(s⊗ α) = ∇s ∧ α + s⊗ dα, s ∈ Γ∞(M, E), α ∈ Ωk(M).

The operator ∇ thus defined doesn’t turn Ω•(M; E) into a complex: ∇2 6= 0. However
we do have

∇2( f s) = f∇2(s), for all f ∈ C∞(M)

so we can define the curvature F(∇) ∈ Ω2(M, End(E)) by

F(∇)(s) := ∇2(s) ∈ Ω2(M; End(E)) for all s ∈ Γ∞(M, E).

In a local trivialization ∇|Uα = d + Aα we see that

(3) Fα := F(d + Aα) = (d + Aα)
2 = dAα + Aα ∧ Aα.

Indeed with this we see that under the local gauge transformation (??) we have

Fα = d(ϕαβ Aβ ϕ−1
αβ − (dϕαβ)ϕ−1

αβ ) + (ϕαβ Aβ ϕ−1
αβ − (dϕαβ)ϕ−1

αβ ) ∧ (ϕαβ Aβ ϕ−1
αβ − (dϕαβ)ϕ−1

αβ )

= ϕαβdAβ ϕ−1
αβ + ϕαβ(Aβ ∧ Aβ)ϕ−1

αβ

= ϕαβFβ ϕ−1
αβ .

This is precisely the transformation property of a section of the bundle End(E)→ M in
local trivializations. It is remarkable that, although a connection is not a section of any
bundle associated to E, the curvature does have this property. From the local expression
for the curvature above, together with Eq. (??), we can deduce the useful formula

F(∇)(X, Y) = [∇X,∇Y]−∇[X,Y], X, Y ∈ X(M).

Lemma 3.1 (Bianchi identity). The curvature of a connection satisfies:

∇End(E)(F(∇E)) = 0.

Proof. Write out:

∇End(E)(F(∇E))(s) = ∇E(F(∇)(s))− F(∇E)(∇E(s))

= (∇E)3(s)− (∇E)3(s)

= 0.

Here we have used the definition (??) of the connection ∇End(E) on the bundle End(E)
induced by ∇E. �
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3.2. Chern classes. Consider now the invariant polynomials Pk ∈ Ik
inv defined by

det(I + tA) =: P0(A) + tP1(A) + t2Pk(A) + . . . , A ∈ Matr(C).

(Of course, det(1 + tgAg−1) = det(1 + tA), so the polynomials are indeed invariant.)
The polynomial Pk defines the k-th Chern class1

ck(E) :=

(√
−1

2π

)k

Pk(F(∇)) ∈ H2k
dR(X).

For example, using the well-known expansion

det(I + tA) = r + tTr(A) +
t2

2
(
Tr(A2)− Tr(A)2)+ . . . + tr det(A),

we find in low degrees

c0(E) = rank(E) ∈ H0
dR(M),

c1(E) =
√
−1

2π
Tr(F(∇)) ∈ H2

dR(M),

c2(E) = − 1
4π2 (Tr(F(∇) ∧ F(∇))− Tr(F(∇)) ∧ Tr(F(∇))) ∈ H4

dR(M).

The total Chern class is defined as

c(E) := ∑
k≥0

ck(E).

Proposition 3.2. The total chern class c(E) ∈ H•dR(M) satisfies the following properties:

i) (Naturality) for f : N → M a smooth map, we have

c( f ∗E) = f ∗c(E) ∈ H•dR(N),

ii) (Product formula) For a direct sum E⊕ F, we have

c(E⊕ F) = c(E)c(F)

The first property follows from the fact that the pull-back connection f ∗∇ on f ∗E has
curvature equal to F( f ∗∇) = f ∗F(∇). The second property follows from the fact that
the direct sum connection∇E⊕∇F on E⊕ F has curvature that can be written in matrix
form as (

F(∇E) 0
0 F(∇F)

)
.

In general, Chern classes measure how “nontrivial” a vector bundle is. To witness this
point, we have:

Lemma 3.3. For a trivializable vector bundle E→ M, all Chern classes ck(E), k ≥ 1 are zero.

1The reason for the normalization factor
√
−1

2π is the fact that with precisely this factor the Chern classes
are integtral, c.f. Theorem ??
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Proof. Let us first remark that on the trivial vector bundle M × Cr we can choose the
trivial connection given by the exterior derivative d applied to vector-valued functions.
This connection has curvature zero since d ◦ d = 0 and therefore the trivial bundle has
vanishing Chern classes. For a trivializable vector bundles, assume that ϕ : E

∼=−→
M×Cr is a trivialization. Then E carries a connection given by

∇ = ϕ−1 ◦ d ◦ ϕ = d + ϕ−1dϕ.

We have already seen that under such “gauge transformations” ϕ, the curvature trans-
forms neatly:

F(ϕ−1 ◦ d ◦ ϕ) = ϕF(d)ϕ−1 = 0,

so again the Chern classes are zero. Notice that the theory implies that any other con-
nection ∇ on E, its Chern forms ck(E,∇) ∈ Ω2k(M) are exact. �

Finally, we come a crucial property of Chern classes, namely that they are integral
cohomology classes:

Theorem 3.4. Chern classes of complex vector bundles are integral. This means that for any
complex vector bundle vector bundle E → M and any closed compact 2k-dimensional oriented
submanifold S ⊂ M, the integral ∫

S
ck(E)

is an integer.

These numbers are called Chern numbers. Notice that the fact that the differential form
ck(E) ∈ Ω2k(M) is closed explains that the value of the integral does not depend on the
precise embedding of S into M, in fact by de Rham’s theorem only the underling homol-
ogy class in Hsing

2k (M, R) (obtained by taking the fundamental class) matters. However,
the fact that the value of these integrals are always integers is truly remarkable.
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